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Flow Regulated Water Clock (250BC)

• 250 BC flow regulated water clock

– Ctesibius, a Greek Inventor
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Self Re-filling Oil Lamp (200 BC)

• Self Re-filling mechanism

– Philon, a Greek inventor

air

Oil bath

Weight Regulated Liquid Filling Device

• 1st Century AD
Pivot Joint

valve

Empty

Full

Pivot Joint

Full

Empty



Flyball Governor (1788)

• James Watt (1788)
First crude Governors were working well.

Precisely machined governors  caused 

steam generators blow up occasionally.
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Plant Model: Mechanical System

• Shock absorber

Free body diagram

d
a

m
p

e
r

s
p

ri
n

g

• Spring resists displacement

• Damper resists speed

Second order model

(2.1)

(2.2)

Plant Model: Electrical System

• RC Circuit



Plant Model: Electrical System

First Order System

(2.3)

• System models are ordinary differential equations (ODEs).

• The order of model ODE depends on the system 

complexity.

• The response (output) of the plant can be obtained by 

First Order System

• The response (output) of the plant can be obtained by 

solving model ODE for a given forcing function (input)

• Laplace transforms can be used to solve ODEs efficiently

Laplace Transforms

System Response with Laplace

• RC Circuit Model
– When transformed into Laplace domain L{ } (forward)

(2.3)

For DC Voltage

(3.47)

For DC Voltage

• Response
– When transformed back to time domain L-1{ } (inverse)

Method 1: Partial fraction

(3.49)

System Response with Laplace

Method 2:

Convolution Integral

(3.47),
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• Transforming back to time domain

)(tu e

(3.50)

Homogeneous Response Exogenous Response
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System Response with Laplace

• Mechanical System Response

Where

(2.2)

(3.51)
Where

• Transforming into Laplace domain

• Three possible scenarios based on the solutions of the 

denominator polynomial (characteristic equation)
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Determinant

System Response : Partial Fractions

• Case 1:

(3.52)

where                                     negative, real, distinct poles

• Case 1: Partial Fractioning

Poles are determined by the system parameters

where

From initial conditions

and system parameters
From system parameters



System Response : Convolution Integral

• Transforming back to time domain

• Case 1: Convolution Integral Method

Using coverup method (see Appendix)

Decay with time
Steady-state 

response

Transient response

Using coverup method (see Appendix)

where

(3.55),

System Response with Laplace
• Transforming back to time domain

• For 

Steady-state response Transient response

Steady State and Transient Responses

• Steady State Response

– The sustainable response over time

– Depends only on external forcing function

• Transient response

– Decaying response 

– Depends both on Initial conditions and external forcing function

Simulation:
Case 1 Over Damped Shock-Absorber
• Set parameters as follows

– Damper is stronger than spring action

– Speed is strongly opposed

• Then, from (3.51)

• Consequently, the two system 

poles are

-ve real distinct poles



Matlab Code Matlab Code
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• Case 2:

(3.52) →

→ Real, -ve coincident poles

where Recall

(3.61)

IC and System System
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System Response: Case 2 Critical Damping

For

d()/dt
1/s

s

Responce

Simulation: Case 2 Critical Damping

Increase Spring Constant

Deflection at steady state
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Deflection at steady state

Poles 721 −=== ααα

MatLab

Simulation
Critical Damping

• Fast response

• No overshoots

• Most energy 

efficient

Response 

Comparision
• Over damped 

response is BIG
and slowand slow

• Critically damped 

response is small

and FAST



Response: Case 3 Under Damped

• Case 3:

• System poles

Complex Conjugate 

pair of poles

• Response
(3.52),
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Response : Case 3 Under Damped

• Decaying sinusoidal indicates an oscillation, which is a 

result of weaker damper to resist the speed adequately

Steady state response
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Under Damped 
Response

• Poles 

• Oscillatory due to • Oscillatory due to 

spring action being 

dominant

• Oscillations die out, 

response is stable



Oscillatory 
Response

Response 

Comparison
• Critical damping and 

under damping 
responses are better 

than over damping than over damping 
response

• Overshoot can be a 

problem in motion 
control systems 
(robots), however, it is 

acceptable in process acceptable in process 
control systems 
(temperature, pressure)

• Under damping 
response is the fastest 

of all
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