1. Historical Control Systems Feedback by System Design

Dr. Rohan Munasinghe Department of Electronic and Telecommunication Engineering Faculty of Engineering University of Moratuwa 10400

Flow Regulated Water Clock (250BC)

Self Re-filling Oil Lamp (200 BC)

- Self Re-filling mechanism
 - Philon, a Greek inventor

Weight Regulated Liquid Filling Device

Flyball Governor (1788)

2. Plant Model and Response

Dr. Rohan Munasinghe Department of Electronic and Telecommunication Engineering Faculty of Engineering University of Moratuwa 10400

Plant Model: Mechanical System

· Shock absorber

- Spring resists displacement $m\ddot{y}(t) = f ky(t) b\dot{y}(t)$ (2.1)
- Damper resists speed

 $m\ddot{y}(t) = f - ky(t) - b\dot{y}(t) \quad (2.1)$ $\ddot{y}(t) + \frac{b}{m}\dot{y}(t) + \frac{k}{m}y(t) = \frac{1}{m}f(t) \quad (2.2)$

Plant Model: Electrical System

Second order model

Plant Model: Electrical System

$$\begin{split} \dot{v}(t) + \frac{R_1 + R_2}{R_1 R_2 C} v(t) &= \frac{1}{R_1 C} v_s(t) \\ \dot{v}(t) + a v(t) &= b v_s(t) \\ \bullet & \bullet \\ a &= \frac{R_1 + R_2}{R_1 R_2 C} \quad b = \frac{1}{R_1 C} \end{split}$$
 (2.3)
First Order System

- System models are ordinary differential equations (ODEs).
- The order of model ODE depends on the system complexity.
- The response (output) of the plant can be obtained by solving model ODE for a given forcing function (input)
- Laplace transforms can be used to solve ODEs efficiently

Laplace Transforms

function	f(t)	F(s)
unit impulse	$\delta(t)$	1
unit step	u(t)	$\frac{1}{s}$
time exponent	e^{at}	$\frac{1}{s-a}$
\cos in	$\cos \omega t$	$\frac{s}{s^2+\omega^2}$
power of time	t^n	$\frac{n!}{s^{n+1}}$
linearity	$\alpha_1 f_1(t) \pm \alpha_2 f_2(t)$	$\alpha_1 F_1(s) \pm \alpha_2 f_2(s)$
exponential scaling	$e^{at}f(t)$	F(s-a)
time shift	$f(t \pm T)$	$e^{\pm sT}F(s)$
time multiplication	tf(t)	$-\frac{d}{ds}F(s)$
differential	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0)$
		$\cdots - f^{n-1}(0)$
integral	$\int f(t)dt$	$\frac{1}{s}F(s)$
time scaling	f(at)	$\frac{1}{a}e^{\frac{1}{a}}F(s)$
convolution integral	$\int_0^t f(\tau)g(t-\tau)d\tau$	F(s)G(s)

System Response with Laplace

• RC Circuit Model $\dot{v}(t) + av(t) = bv_s(t)$ (2.3) – When transformed into Laplace domain L{ } (forward)

$$sV(s) - v(0) + aV(s) = bV\frac{1}{s}$$

$$(s + a)V(s) = v(0) + bV\frac{1}{s}$$

$$V(s) = \frac{1}{s + a}v(0) + \frac{b}{s(s + a)}V \quad (3.47)$$

$$V(s) = \frac{1}{s + a}v(0) + \frac{b}{a}\left(\frac{1}{s} - \frac{1}{s + a}\right)V$$
Response Method 1: Partial fraction

– When transformed back to time domain L^{-1} { (inverse)

$$v(t) = v(0)e^{-at} + \frac{b}{a}V\left(1 - e^{-at}\right) \quad (3.49)$$

System Response with Laplace

(3.47),
$$V(s) = \frac{1}{s+a}v(0) + \frac{b}{s(s+a)}V$$

Method 2: Convolution Integral

Transforming back to time domain

$$v(t) = v(0)e^{-at} + bV_s \int_0^t e^{-a\tau} u_s(t-\tau)d\tau$$

= $v(0)e^{-at} + bV_s \int_0^t e^{-a\tau} .1d\tau$
= $v(0)e^{-at} + \frac{-b}{a}V_s e^{-a\tau}|_0^t$
= $v(0)e^{-at} + \frac{b}{a}V_s \left(1 - e^{-at}\right)$ (3.50)

Homogeneous Response Exo

Exogenous Response

%% First Order Response: RC Circuit R1=1000; R2=2000; C=200*10^-6; a=(R1+R2)/(R1*R2*C); b=1/(R1*C); v0=2; dur=0.6 t=[0:0.01:dur];

% circuit components % model coefficients % initial condition % simulation duration

%% Homogeneous Response yH=v0*exp(-a*t);

%% Exogenous Response
yE=(b/a)*(1-exp(-a*t));

%% Total Response yT=yH+yE;

%% Plot graphs

subplot(311); plot(t,yH); axis([0 dur 0 2]); ylabel('Homogeneous response [V]'); grid on;

subplot(312); plot(t,yE); axis([0 dur 0 2]); ylabel('Exogenous response [V]'); grid on;

subplot(313); plot(t,yT); axis([0 dur 0 2]);
ylabel('Total response [V]'); xlabel('time [s]'); grid on;

System Response with Laplace

Mechanical System Response

(2.2)
$$\begin{split} \ddot{y}(t) + \frac{b}{m}\dot{y}(t) + \frac{k}{m}y(t) &= \frac{1}{m}f(t)\\ \ddot{y}(t) + 2\sigma\dot{y}(t) + \rho y(t) &= \eta f(t) \\ 2\sigma &= \frac{b}{m}, \ \rho &= \frac{k}{m}, \ \text{and} \ \eta &= \frac{1}{m} \end{split}$$
(3.51)

Transforming into Laplace domain

$$s^{2}Y(s) - sy(0) - y'(0) + 2\sigma[sY(s) - y(0)] + \rho Y(s) = \eta F(s)$$

$$(s^{2} + 2\sigma s + \rho)Y(s) - y(0)s - [2\sigma y(0) + y'(0)] = \eta F(s)$$

$$Y(s) = \frac{y(0)s + [2\sigma y(0) + y'(0)]}{(s^{2} + 2\sigma s + \rho)} + \frac{\eta}{(s^{2} + 2\sigma s + \rho)}F(s)$$
(3.52)

 Three possible scenarios based on the solutions of the denominator polynomial (characteristic equation)

$$(2\sigma)^2 - 4.1.\rho = \sigma^2 - \rho \longleftarrow \Delta(s) = s^2 + 2\sigma s + \rho = 0$$
Determinant

System Response : Partial Fractions

• Case 1:
$$\sigma^2 - \rho > 0$$
 ($b > 2\sqrt{mk}$)
(3.52) $Y(s) = \frac{K_1 s + K_2}{(s - \alpha_1)(s - \alpha_2)} + \frac{\eta}{(s - \alpha_1)(s - \alpha_2)} F(s) \leftarrow F(s) = \frac{A}{s}$

where $\alpha_1, \alpha_2 = -\sigma \pm \sqrt{\sigma^2 - \rho}$ negative, real, distinct poles Poles are determined by the system parameters

Case 1: Partial Fractioning

$$Y(s) = \frac{K_1 s + K_2}{(s - \alpha_1)(s - \alpha_2)} + \frac{\eta}{(s - \alpha_1)(s - \alpha_2)} \frac{A}{s}$$
(3.55)
$$= \frac{P_1}{(s - \alpha_1)} + \frac{P_2}{(s - \alpha_2)} + \eta A \left(\frac{Q_1}{(s - \alpha_1)} + \frac{Q_2}{(s - \alpha_2)} + \frac{Q_3}{s}\right)$$
where $P_1 = \frac{K_1 \alpha_1 + K_2}{\alpha_1 - \alpha_2}, P_2 = \frac{K_1 \alpha_2 + K_2}{\alpha_2 - \alpha_1}, Q_1 = \frac{1}{\alpha_1(\alpha_1 - \alpha_2)}, Q_2 = \frac{1}{\alpha_2(\alpha_2 - \alpha_1)}, Q_3 = \frac{1}{\alpha_1 \alpha_2}$ From initial conditions
and system parameters From system parameters

System Response : Convolution Integral

- Transforming back to time domain $y(t) = P_1 e^{\alpha_1 t} + P_2 e^{\alpha_2 t} + \eta A \left(Q_1 e^{\alpha_1 t} + Q_2 e^{\alpha_2 t}\right) + \eta A Q_3$ $= \eta A Q_3 + (P_1 + \eta A Q_1) e^{\alpha_1 t} + (P_2 + \eta A Q_2) e^{\alpha_2 t} \qquad (3.56)$ Steady-state response Decay with time Transient response
- Case 1: Convolution Integral Method
 Using coverup method (see Appendix)

(3.55),
$$Y(s) = \left\{ \frac{P_1}{(s - \alpha_1)} + \frac{P_2}{(s - \alpha_2)} \right\} + \eta \left\{ \frac{P_3}{(s - \alpha_1)} + \frac{P_4}{(s - \alpha_2)} \right\} F(s)$$

 $= \frac{P_1}{(s - \alpha_1)} + \frac{P_2}{(s - \alpha_2)} + \eta \frac{P_3}{(s - \alpha_1)} F(s) + \eta \frac{P_4}{(s - \alpha_2)} F(s) (3.57)$
where $P_3 = \frac{1}{\alpha_1 - \alpha_2}$ $P_4 = \frac{1}{\alpha_2 - \alpha_1}$

Steady State and Transient Responses

- Steady State Response
 - The sustainable response over time
- $-\eta A\left(\frac{P_3}{\alpha_1}+\frac{P_4}{\alpha_2}\right)$
- Depends only on external forcing function
- Transient response
 - Decaying response
 - Depends both on Initial conditions and external forcing function

 $\left(P_1 + \frac{\eta A P_3}{\alpha_1}\right)e^{\alpha_1 t} + \left(P_2 + \frac{\eta A P_4}{\alpha_2}\right)e^{\alpha_2 t}$

System Response with Laplace

• Transforming back to time domain

$$y(t) = P_{1}e^{\alpha_{1}t} + P_{2}e^{\alpha_{2}t} + \eta P_{3} \int_{0}^{t} e^{\alpha_{1}(t-\tau)}f(\tau)d\tau + \eta P_{4} \int_{0}^{t} e^{\alpha_{2}(t-\tau)}f(\tau)d\tau$$
• For $f(t) = Au_{s}(t)$

$$y(t) = P_{1}e^{\alpha_{1}t} + P_{2}e^{\alpha_{2}t} + \eta P_{3} \int_{0}^{t} e^{\alpha_{1}(t-\tau)}Ad\tau + \eta P_{4} \int_{0}^{t} e^{\alpha_{2}(t-\tau)}Ad\tau$$

$$= P_{1}e^{\alpha_{1}t} + P_{2}e^{\alpha_{2}t} + \eta P_{3}e^{\alpha_{1}t} \int_{0}^{t} e^{-\alpha_{1}\tau}Ad\tau + \eta P_{4}e^{\alpha_{2}t} \int_{0}^{t} e^{-\alpha_{2}\tau}Ad\tau$$

$$= P_{1}e^{\alpha_{1}t} + P_{2}e^{\alpha_{2}t} - \frac{\eta P_{3}Ae^{\alpha_{1}t}}{\alpha_{1}}e^{-\alpha_{1}\tau}|_{0}^{t} - \frac{\eta P_{4}Ae^{\alpha_{2}t}}{\alpha_{2}}e^{-\alpha_{2}\tau}|_{0}^{t}$$

$$= P_{1}e^{\alpha_{1}t} + P_{2}e^{\alpha_{2}t} - \frac{\eta P_{3}Ae^{\alpha_{1}t}}{\alpha_{1}}(e^{-\alpha_{1}t} - 1) - \frac{\eta P_{4}e^{\alpha_{2}t}A}{\alpha_{2}}(e^{-\alpha_{2}t} - 1)$$

$$= P_{1}e^{\alpha_{1}t} + P_{2}e^{\alpha_{2}t} + \frac{\eta P_{3}A}{\alpha_{1}}(1 - e^{\alpha_{1}t}) + \frac{\eta P_{4}A}{\alpha_{2}}(1 - e^{\alpha_{2}t})$$

$$= -\eta A\left(\frac{P_{3}}{\alpha_{1}} + \frac{P_{4}}{\alpha_{2}}\right) + \left(P_{1} + \frac{\eta AP_{3}}{\alpha_{1}}\right)e^{\alpha_{1}t} + \left(P_{2} + \frac{\eta AP_{4}}{\alpha_{2}}\right)e^{\alpha_{2}t}$$
Steady-state response Transient response (3.59)

Simulation: Case 1 Over Damped Shock-Absorber

Set parameters as follows

k=125N/cm b=700Ns/cm

- Damper is stronger than spring action
- Speed is strongly opposed
- Then, from (3.51)

$$\sigma = 7, \rho = 2.5, \text{ and } \eta = 0.2$$

• Consequently, the two system poles are α

 α_1 =-0.181 and α_2 =-13.819 -ve real distinct poles

Matlab Code

1	%% Shock3p8 : Second Order Response of Shock-Absorber		
2 -	<pre>dur=25;m=50; % weight of the rider</pre>		
3 -	b=700; k=125; % case 1: b[Ns/cm] k[N/cm] m[kg] over damped		
4	%b=700; k=b^2/(4*m) % case 2: b[Ns/cm] k[N/cm] m[kg] critically damped		
5	%b=300; k=2450 % case 3: b[Ns/cm] k[N/cm] m[kg] under damped		
6			
7 -	<pre>sigma=b/(2*m), rho=k/m, eta=1/m % model coefficients</pre>		
8 -	d=sigma^2-rho % determinant		
9 -	A=10★m; % weight step input		
10			
11 -	t = [0:0.01:dur];		
12 -	y0=-1.50; yd0=1.80; % Initial conditions		
13 -	- k1=y0; k2=2*sigma*y0+yd0;		
14			
15	%% Determination of poles		
16 -	- if d>0		
17 -	- alpha1=-sigma+sqrt(d)		
18 -	- alpha2=-sigma-sqrt(d)		
19 -	p1=(alpha1*k1+k2)/(alpha1-alpha2);		
20 -	p2=(alpha2*k1+k2)/(alpha2-alpha1);		
21 -	q1=1/(alpha1*(alpha1-alpha2));		
22 -	q2=1/(alpha2*(alpha2-alpha1));		
23 -	q3=1/(alpha1*alpha2);		
24 -	$y_{H=p1*exp(alpha1*t)+p2*exp(alpha2*t);$		
25 -	yE=eta*A*(q1*exp(alpha1*t)+q2*exp(alpha2*t)+q3);		

26 - elseif d==0

27	-	alpha=-sigma
28	-	p5=(k1*alpha+k2)/alpha; p6=-k2/alpha; p7=1/alpha; p8=-1/alpha;
29	-	yH=(p6+p5)*exp(alpha*t)+alpha*t.*exp(alpha*t);
30	-	yE=eta*A*(-p7*t.*exp(alpha*t)+p8*(exp(alpha*t)-1)/alpha);
31	-	else
32	-	omega=sqrt(-d), phiH=atan2(k1,(k2-sigma*k1)/omega)
33	-	phiE-atan2(omega,sigma)
34	-	$K = sqrt(k1^2+(k2-sigma*k1)^2/omega^2)$
35	-	yH=K*exp(-sigma*t).*sin(omega*t+phiH);
36	-	yE1=exp(-sigma*t).*sin(omega*t+phiE);
37	-	yE=eta*A/omega*(omega/(omega^2+sigma^2)-yE1);
38	-	end
39		
40		%% Total Response
41	-	уТ=уH+уЕ ;
42		
43		%% Plot graphs
44	-	<pre>subplot(311); plot(t,yH); axis([0 dur -2.8 5]);</pre>
45	-	<pre>ylabel('Homogeneous response [y_H]'); grid on;</pre>
46	-	<pre>subplot(312); plot(t,yE); axis([0 dur -2.8 5]);</pre>
47	-	<pre>ylabel('Exogenous response [y_E]'); grid on;</pre>
48	-	<pre>subplot(313); plot(t,yT); axis([0 dur -2.8 5]);</pre>
49	-	<pre>ylabel('Total response [y_T]'); xlabel('time [s]'); grid on;</pre>

System Response

• Case 2: $\sigma^2 - \rho = 0, (b = 2)$	\sqrt{mk} \rightarrow Real, -ve coincident poles
$(3.52) \rightarrow \qquad Y(s) = \frac{K_1 s + F}{(s - \alpha)}$	$\mathbf{\hat{f}}_{2} + \frac{\eta}{(s-\alpha)^{2}}F(s)$
$Y(s) = \left\{ \frac{P_5 s}{(s-\alpha)^2} + \frac{P_6}{(s-\alpha)} \right\}$	$+\eta \left\{ \frac{P_7 s}{(s-\alpha)^2} + \frac{P_8}{(s-\alpha)} \right\} F(s)$ (3.61)
where $P_5 = \frac{K_1 \alpha + K_2}{\alpha}$, $P_6 = -\frac{K_2}{\alpha}$, P_7	$=\frac{1}{\alpha}$, and $P_8 = -\frac{1}{\alpha}$ f(t) Recall
IC and System	System m
	ky(t)
	dampe

System Response: Case 2 Critical Damping

Responce

$$y(t) = P_5(1 + \alpha t)e^{\alpha t} + P_6e^{\alpha t} + \eta AP_7te^{\alpha t} + \eta AP_8\frac{1}{\alpha}(e^{\alpha t} - 1)$$

= $-\frac{\eta AP_8}{\alpha} + \left(\frac{\eta AP_8}{\alpha} + P_6 + P_5\right)e^{\alpha t} + (\eta AP_7 + P_5\alpha)te^{\alpha t}(3.63)$

Simulation: Case 2 Critical Damping

Increase Spring Constant

$$k = 125 \text{N/cm} \quad b = 700 \text{Ns/cm}$$

$$k = 2450 [\text{N/cm}] \quad k = \frac{b^2}{2m}$$

$$f/k = 500/2450 = 0.2cm$$

Deflection at steady state

Poles
$$\alpha_1 = \alpha_2 = \alpha = -7$$

MatLab Simulation

PIN

Critical Damping

- Fast response ٠
- No overshoots
- Most energy ٠ efficient

Response **Comparision**

- Over damped response is BIG and slow
- Critically damped response is small and FAST

Response: Case 3 Under Damped

- Case 3: $\sigma^2 \rho < 0, \ b < 2\sqrt{km} \implies \text{Complex Conjugate}$ pair of poles
- System poles $\alpha_1, \alpha_2 = -\sigma \pm j\omega$
- *Response* (3.52)

$$\begin{aligned} Y(s) &= \frac{y(0)s + [2\sigma y(0) + y'(0)]}{(s + \sigma - j\omega)(s + \sigma + j\omega)} + \frac{\eta}{(s + \sigma - j\omega)(s + \sigma + j\omega)}F(s) \\ &= \frac{K_{1}s + K_{2}}{(s + \sigma)^{2} - (j\omega)^{2}} + \frac{\eta}{(s + \sigma)^{2} - (j\omega)^{2}}F(s) \\ &= K_{1}\frac{s}{(s + \sigma)^{2} + \omega^{2}} + K_{2}\frac{1}{(s + \sigma)^{2} + \omega^{2}} + \eta\frac{1}{(s + \sigma)^{2} + \omega^{2}}\frac{A}{s} \\ &= K_{1}\left[\frac{s + \sigma}{(s + \sigma)^{2} + \omega^{2}} - \frac{\sigma}{\omega}\frac{\omega}{(s + \sigma)^{2} + \omega^{2}}\right] + \frac{K_{2}}{\omega}\frac{\omega}{(s + \sigma)^{2} + \omega^{2}}\frac{A}{s} \end{aligned}$$
(3.65)

Response : Case 3 Under Damped

$$y(t) = K_1 e^{-\sigma t} \cos \omega t - \frac{K_1 \sigma}{\omega} e^{-\sigma t} \sin \omega t + \frac{K_2}{\omega} e^{-\sigma t} \sin \omega t + \frac{\eta A}{\omega} \int_0^t e^{-\sigma t} \sin \omega t dt = e^{-\sigma t} \left\{ K_1 \cos \omega t + \frac{(K_2 - \sigma K_1)}{\omega} \sin \omega t \right\} + \frac{\eta A}{\omega} \left\{ \frac{\omega}{\omega^2 + \sigma^2} - e^{-\sigma t} \sin(\omega t + \phi_E) \right\}$$

 Decaying sinusoidal indicates an oscillation, which is a result of weaker damper to resist the speed adequately

Under Damped Response

- Poles $\alpha_1, \alpha_2 = -3 \pm j6.3$
- Oscillatory due to spring action being dominant
- Oscillations die out, response is stable

Response Comparison

- Critical damping and under damping responses are better than over damping response
- Overshoot can be a problem in motion control systems (robots), however, it is acceptable in process control systems (temperature, pressure)
- Under damping
 response is the fastest
 of all

